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Abstract -

In this paper, we consider several conditions on a commutative ring R which are
related to seminormality. We show that they are all equivalent to seminormality if
11 is reduced with only a finite number of minimal prime ideals (in particular, if R
is reduced and Noetherian).

Introduction
Let R be a commutative ri z{%}‘ Recall that R
is {2.3)-closed {or ss’%miﬁ(;rzz;zzi} if whenever :2:3?;5‘“3 € 5? for z € T{R), then x & 1.
Based on earlier work of Traverso [12], Gilmer and Heitimann [4] ai;(;sw{‘ that if R is
either an integral domain or a reduced Noetherian ring, then sz{ RIK}) = Pie(R)
Hand only if s (2.3} -closed (here X is any nonempty set of indeterminates, and

recall that R is ;emz{ wi if nil(R) = {0}, Le., R has no nonzero nilpotent elements).
| s that this result {%i;{é:a not extend to arbitrary reduced

An example in |
connnutative zzz;ga‘ Rush [10} extended this result to reduced commutative rings

with only a finite number of minimal prime ideals.
)} commutative ring [ to be seminormal

Following Swan [1], we de ﬁ;w a {reduced)

es the following conditio
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Then Pic(R[X]) = Pic(R) if and only if Ryeq(= R/nil(R)) is seminormal [11,
Theorem 1]. Note that a seminormal ring is (2,3)-closed, but a reduced (2,3)-closed
ring need not be seminormal (see Section 3).

In this paper, we study several conditions on a commutative ring R which are
related to seminormality. They are all equivalent if R is an integral domain, or
more generally, if B is a reduced commutative ring with only a finite number of
minimal prime ideals, equivalently, if R is a subring of a direct product of finitely
many integral domains (in particular, if B is reduced and Noetherian); but they
need not be equivalent for an arbitrary reduced commutative ring R. In the first
section, we study these conditions for arbitrary commutative rings. In the second
section, we specialize to (reduced) rings which are represented as subrings of direct
products of integral domains. In the final section, we relate these conditions to
(2,3)-closure and the Picard group. In particular, we show in Theorem 3.3 that
Pic(R[X]) = Pic(R) for a reduced commutative ring R with only a finite number
of minimal prime ideals if and only if whenever a* = b3 for regular elements a and
b of R, then a = bk for some k € R.

Throughout, all rings are commutative with 1. When we say that a ring A is
a subring of a ring B, we mean that A and B have the same identity element. As
usual, £ € R is called a regular element if = is not a zerodivisor of R. Also, X
will denote a single indeterminate and X a nonempty set of indeterminates. Any

¥

undefined terminology or notation is standard, as in {3, 5, 6].

1 Elementary Results

In this section, we consider the following five conditions related to seminormality
for a commutative ring R with a,b € R. Conditions (2) and (3) are the easiest to
check since they only involve divisibility in A.

(1) If a® = b, then a = k* and b = k? for some k € R (i.e., R is seminormal).
(2) If a® = b®, then a = bk for some k € R (ie., bla).
(3) If a? = b, then b? = ak for some k € R (i.e., a|b?).

(4) If a® = b°, then b* = ¢ and a* = ¢? for some ¢ € R with ¢ = ak for some
ke R (ie, alc).

(5) If a? = b, then a? = ak® and b2 = bk? for some k € R.

Examples of seminormal rings include any integrally closed domain (cf. Section3),
any von Neumann regular ring, and any direct product of seminormal rings. We
show in Theorem 2.6 that all five conditions are equivalent for R a reduced com-
mutative ring with only a finite number of minimal prime ideals (in particular,
for B a reduced commutative Noetherian ring). We first give several elementary
observations and a theorem. ‘

REMARK 1.1. (a) In [11], Swan included “reduced” in his definition of semi-
normal ring. However, Costa observed that the ring R is necessarily reduced if
it satisfies condition (1). Thus the k in condition (1) is unique (cf. [11, Lemma
3.1]). Also, R is reduced if it satisfies condition (2). It is sufficient to show that if
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condition (2) holds and a? = 0, then @ = 0. Let b = 0. Then a? = 0 = b3 yields
o = bk for some k € R. Hence a = 0. However, one can easily show that R = Zy
satisfies conditions (3), (4), and (5) (see part (e) below). More generally, conditions
(3), (4), and (5) all hold if R is quasilocal with maximal ideal M such that M? = 0.
Hence condition (3), (4), or (5) on R need not imply that R is reduced, and thus
need not imply conditions (1) or (2). '

(b) We have already observed that in condition (1), k is uniquely determined.
In condition (2), k is determined only up to ann(b). In conditions (3) and {(4), k is
determined only up to ann(a); while in condition (5), k is determined only up to
ann(a) Nyann(b).

(¢) Note that conditions (1) - (5) are all equivalent and k is uniquely determined
if @ and b are restricted to regular elements of R.

(d) Let {Rq} be a family of commutative rings with 1. Then the direct product
[ Ra satisfies any of the above five conditions if and only if each R, satisfies that
condition.

(e) Let R = Z,, where n = pJ"*..-p* for distinct primes p; and integers
m; > 1. Then R satisfies conditions (1) or (2) < each m; = 1; and R satisfies
conditions (3), (4), or (5) ¢ each m; € {1,2,4}. We leave the details to the reader.

THEOREM 1.2. Let R be a direct product of integral domains. Then conditions
(1) - (5) are all equivalent. Moreover, the same k € R works in each implication.
In particular, they are all equivalent if R is an integral domain.

Proof. If R is an integral domain and 0 # a,b € R, then the same k(= a/b = b*/a €

R) works for each condition. The general result is clear since the conditions all hold

coordinatewise. 0

‘We next give the Qﬂssibie implications between the five conditions. We have been
unable to determine the relationship between conditions (3) and (5). Otherwise,
examples given throughout the paper show that these are the only implications
that hold in general. The following diagram summarizes the implications between
conditions (1) - (5) in Theorem 1.3.

THEOREM 1.3. Let R be a commutative ring. Then (1) = (2}, (1) = (3},
(1) = (4), (1) = (5), (2) = (3), (2) = (4), (2) = (5), and (8) < (4). Moreover,
the same k € R works in each implication.

Proof. The implications (1) = (2), (1) = (3), (1) = (4), (1) = (5), and (3) < (4)
are all easy and thus left to the reader. We do (2) = (3) and (2) = (5). Thus also
(2) = (4) since (3) = (4). The proof of each implication yields the “moreover”
statement.

(2) = (3): Suppose that (2) holds. Then R is reduced by Remark 1.1(a). Let
a,b € R with a® = 5% Then o = bk for some k € B. We show that B —-agke P
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for each prime ideal P of B. If b € P, then also a € P, and hence b2 — qk e Pt
b & P, then b(b* - ak) = b3 _ albk) = a® —a? = 0 € P yields b — ak ¢ P, Thus
b* — ak = 0 since R is reduced

(2) = (5): Suppose that (2) holds. Let a,b e R with o2 = 5* Then a = bk for
some k € R, and by the proof of (2) = (3) above, also b2 = ak. Thus 2 = ak =
(bk)k = bk®. Hence a® = (bk)? = p242 = {ak)k? = ak3. ]

In Remark 1.1(a), we observed that condition (3}, (4), or (5) need not imply con-
dition (1) or (2). However, we next show that conditions (2) - (5) are all equivalent
it R is reduced.
THEOREM 1.4. Let R be a reduced commutative ring. Then conditions (2), (3),

{4), and (5) are all equivalent, and (1) = (2). Moreover, the same k ¢ R works in
each implication.

Proof. By Theorem L.3, we need only show that (3} = (2} and {5) = (2). The
proof of each implication yields the “moreover” statement.

(3) = (2): Suppose that (3) holds. Let a,b € R with a? = b3, Then b? = qk for
some k € R. Let P be a prime ideal of B. If g ¢ P, then also b ¢ P, and hence
a~bke P Ifad P, then ala — bk) = a® — a(bk) :bg~b{ak}:53w—b3:0€]}
vields ¢ ~ bk € P. Thus a — bk = 0 since R is reduced.

(5) = (2): Suppose that (5) holds. Let a,b € R with a2 = 3. Then a? = k3
and b% = bk? for some k € R. Let P be a prime ideal of R.* If a4 ¢ P, then
also b € P, and hence a — bk € P. If a & P (thus b ¢ P and ab ¢ P), then
abla —bk) = a?b - ab2k = (ak®)b— a(bk?Vk = abk® — abk® = ¢ ¢ p vields a bk ¢ P,
Herice a — bk = 0 since R is reduced. 0

In Example 2.7 of the next section, we will give an example of a reduced com-
mutative ring R for which (2) # (1). However, Theorem 2.6 shows that all five
conditions are equivalent if R is a reduced commutative ring with only a finite
number of minimal prime ideals. The difficulty with the implication (2) = (1) is
that the same k € R which works in conditions (2) - (5) needs not work in condition
(1) (cf. Remark 1.1(b)).

There are also other natural variants of condition (5). For each integer n > 1,
consider the following condition on R: \

(5n) If @* = b3, then a™*! = ¢"k3 and p+! = b k? for some k € R.

Then (5,) = (5,4) for each integer n > 1, and one may easily verify that
(3) = (5,) for each integer n > 3, and R = Zg satisfies condition (53), but neither
condition (3) nor condition (5). A slight modification to the proof of (5) = (2) of
Theorem 1.4 shows that (5a) = (2) for each integer n = 1 when R is reduced.

2 Subrings of Direct Products of Integral Domains

In this section, we specialize to the case where R is a subring of a direct product
of integral domains. Recall that a commutative ring R is reduced if and only if it
is a subring of a direct product of integral domains (if NP, = 0 for some family of
prime ideals {P,} of R, then R TR/

/ Py}, However, for constructing examples it
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is often easier to view R as a subring of a given [| R, rather than to embed a given
reduced ring R in [[ R/ Ps.

Let {R,} be a family of integral domains and let R C [1Ra. Forz = (z4) € R,
let supp(z) = {alz. # 0}. For z = (za), ¥ = (¥a) € R, we say that = and y have
the same type, denoted by = ~ y, if £, = 0 & Yo = 0, L&, & supp{x) = supp(y).
Note that ~ is an equivalence relation and z ~ z™ for all integers n > 1. Moreover,
ifa~bandc~dforab,ecde R, then ac ~ bd. Also, if z ~y, thenzis a regular
element of R & y is a regular element of R.

Note that the type of an element of R depends on how R is embedded as a
subring in a direct product of integral domains. So when we talk about “type”,
we always assume a fixed embedding R C [[ Ro. Let {Pa} be a family of prime
ideals of R with NPy = 0; so R C [ Ra/Pa. With respect to this embedding, then
(2a) ~ (Ya) just means that z, € Py ¢ ya € Py for each a. Thus the techniques
used in Sections 1 and 2 are really the same. In fact, we invite the reader to translate
the proofs of the results in this section to coordinate-free proofs like those used in
Section 1. ‘

We say that y = (ya) € R C [ Ra is an extension of (or extends) z = (z4) € R,
denoted by yFEz, if yo = To whenever z, # 0. Note that if z is a regular element
of R and yEx, then y is also a regular element of R.

LEMMA 2.1. Let R be a subring of a direct product of integral domains and
a,bce R witha~b~c. Ifab=ac, thenb=c.

Proof. Let a = (aq),b = (ba), and ¢ = (ca). If aa # 0, then by = cq since R, is an
integral domain. If a, = 0, then by = ¢, = 0 since a ~ b ~ ¢. Thus each b, = ¢y

so b= c. i

Theorem 1.4 of the previous section also gives the implications between the five
conditions when R is a subring of a direct product of integral domains. For subrings
of direct products of integral domains, these implications may also be proved using
Lemma 2.1.

Example 2.7 shows that in general (2) # (1). We next show, in the context of
subrings of direct products of integral domains, that a variant of condition {2} is
equivalent to condition (1). We leave the formulation for the arbitrary reduced ring

case to the reader.

THEOREM 2.2. Let R be a subring of a direct product of integral domains. Then
the following two conditions on R are equivalent.

(1) If a® = b3 for a,b € R, then a = k® and b= k? for some k € R.
(2') Ifa? = b® for a,b € R, then a = bk for some k € R with b~ k.

Proof. {1) = (2'): Suppose that (1} holds. Let a? = b3. Then a = k% and b = k*
for some k € R. Thus a = k% = k%k = bk with b = k? ~ k.

(27) = (1): Suppose that (2’) holds. Let o = b°. Then a = bk for some k € R
with b2 ~ b ~ k ~ k2. Thus b%b = b® = a2 = b%k? yields b = k? by Lemma 2.1, and
i}

hence also a = bk = k3.

We next show that another variant of condition (2) implies condition (1).
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THEOREM 2.3. Let R be q subring of a direct product of wintegral domains such

that if a* = b* for a,b € R, then a = be Jor some reqular element ¢ € R. Then R
satisfies condition (1).

Proof. Let a = (a,),b = (ba) € R such that a® = b3 Then g = be for some regular

element ¢ = (¢,) € R. Let F = supp(a) = {a|ay # 0}. Then b, #0and ¢, £ 0
foreach a € F, and b, = 0 if o ¢ F. Since a? = b3 and q = be, we have a, = ¢
and b, = ¢2 in the integral domain R, for each o €F. Let z =2+ 82 - b and
w=c*+a?-qa Then z, = we =S ifae F, and ta=Cwa=cifagF.
Thus z and w are both regular elements of R since ¢ is regular and w ~ ¢ ~ 2

Since w? = 23, by hypothesis w = 2d for some regular element d = (do) € R. Hence
w = d* and z = d? by Remark Li(c). Thus w ~c ~ z ~ d. Note that d, = 2 = b,
fa€ Fandd, =, ifodF. Letkmaw(::f~é}m{kﬁ}éﬁ. Then k, = ¢, if ,
@€ Fand ko =0ifa ¢ F. Hence a = k? and b = k?; so R satisfies condition (1).
(This also follows from Theorem 2.2 since a = bk with b ~ k.) 3

The next condition we consider is Just condition (2) restricted to regular elements
of R. (Note that b and k are also regular elements of R.)

(6) If a® = b3 for a,b € R with b a regular element of R, then a = bk for some
k€ R (ie., bla).

Clearly (2) = (6). In fact, each of the five earlier conditions implies condition
(6) since, as observed in Remark 1.1(c), conditions (1) - (5) are all equivalent
when restricted to regular elements of R Note that condition (6) holds for any
commutative ring R with T(R) = R. In particular, R = Zg satisfies condition (67,
but none of conditions (1) - (5) (cf. Remark 1.1(e)). Also, the direct product 1R,
satsifies condition (6) if and only if each ring R, satisfies condition (6).

We next show that with an additional hypothesis, the conditions (1) - (6) are
all equivalent.

THEOREM 2.4. Let R be subring of a direct product of integral domains such
that if a? = b3 for a,b € R, then b can be extended to regular element of R. Then
conditions (1) - (6) are all equivalent.

Proof. By Theorem 1.4, conditions (2) - (5) are all equivalent, and (1) = (2).
Since (2) = (6), we need only show that (6) = (1). Suppose that (6) holds and
let a® = b for a = (aa),b = (by) € R C [T Ra. By hypothesis, there is a regular
element ¢ = (¢, ) of R such that cEb. Let » — ¢—bandlet r =22 4bandy = 2344,
Let F' = supp(b). Then z, = b, = CarYa = o f € F; and 2, = 2y, = e3 if
a & F. Thus z and y are regular elements of R since 7 ~ ¢ ~ y. Also, yEa,zEb,
and y? = 23 By (6), ¥ = zd for some regular element d of R. Thus a = bd since
yEa,zEb, and y = zd. Hence R satisfies (1) by Theorem 2.3. : £

We next investigate the case where R is a subring of a direct product of finitely
many integral domains. Note that a commutative ring R is a subring of a direct
product of finitely many integral domains if and only if R is reduced with only a
finite number of minimal primeideals (f RC Ry x ... x R, then a minimal prime
ideal of R has the form (Ry x - - x Ry x 0 x Rivt x -+ x R,) N R for some
1 <4< n). First a key lemma; Example 2.7 shows that Lemma 2.5 does not extend
to a direct product of infinitely many integral domains.
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LEMMA 2.5. Let R be a subring of a direct product of finitely many integral
domains. Then each x € R may be extended to a regular element of R.

Proof. We may assume that z is a zerodivisor of R. Thus zy = 0 for some 0 #£ y € R.
Let z = x +y. Then zEx and supp(z) ¢ supp(z). Continuing in this manner, after
finitely many steps we reach a regular element of R which extends z. [3

THEOREM 2.6. Let R be a subring of a direct product of finitely many integral
domains. Then conditions (1) - (6) are all equivalent. In particular, they are all
equivalent if R is a reduced commutative ring with only a finite number of minimal
prime ideals (for example, if R is a reduced commutative Noetherian ring).

Proof. Since each element of R may be extended to a regular element of R by
Lemma 2.5, the first part of this theorem is a direct consequence of Theorem 2.4. For
the “in particular” statement, just note that a commutative ring may be embedded
in a direct product of finitely many integral domains if and only if it is reduced
and has only a finite number of minimal prime ideals, and that a commutative
Noetherian ring has only a finite number of minimal prime ideals [6, Theorem
B8] -

The next example shows that conditions (1) and (2) are not equivalent for sub-
rings of a direct product of infinitely many integral domains, i.e., for arbitrary

reduced commutative rings.

EXAMPLE 2.7. (a) Let R be the subring of T = [] ., Z>[X] generated by
(1, 1,1,...) and {y, = X(en + ent1)in > 1} (here e,, € T has a 1 in the mth slot
and 0 elsewhere). Then R = Z(1,1,1,...) +{(fn) € D XZ2[X] | {fnlord fr = 1}]
is even }. Let a = (X3,0,...),b=(X2,0,...) € R. Then a? = b, but there is no
k € R with a = k% and b = k?. Thus R is a reduced commutative ring for which
condition (1) fails. Note that a = y;b and b € R cannot be extended to a regular
element of R. V

We next show that R satisfies condition (2). Suppose that ¢? = & for g =
(an),b = (b} € R. Then each a, = bk, for some k, € Z[X] since Zy[X] is
integrally closed, and hence seminormal. If a, is “eventually” 0, then we may
assume that k, is “eventually” 0. So we may assume that (k,) € R (add some Xe,,
if necessary). If a, is “eventually” 1, then each a,(0) = b,(0) = £,{0) = 1. Since
al = b2 and charR = 2, then b, has no X term. Thus &, has an X term if and
only if a,, has an X term; so k = (k,) € R. Hence a = bk; so condition (2) holds.

If we modify the above example by using Z,[X] rather than Z,[X], then R =
Zo(1,1,1,...) + {(fn) € D XZX]| [{falordfn = 1}] is even } C [],o, Z2[X]
satisfies condition (2}, but not condition (1), and each element of R is either a unit
or a zerodivisor of Ry so T(R) = R.

(b) Let K be any field and R = K(1,1,1,...) + @ X?K[X] + {ayy1 + -+ +
anynlag € K and n > 1} C [],., K[X], where y, = X{en + £,41) as in part (a)
above. Then one may easily verify that R satisfies condition (2) and T(R) = R,
but R does not satisfy condition (1).




-

56 Anderson and Badawi

3 (2,3)-Closure, Seminormality, and the Picard
Group

In this section, we relate the six conditions from Sections 1 and 2 to (2,3)-closure and
when Pic(R[X]) = Pic(R). We first state three more conditions for a commutative
ring R with integral closure K. ’

(7) If z2,2% € R for z € T(R), then z € R (i.e, R is (2,3)-closed).
(8) If z2,2% ¢ R for z a unit of T(R), then z € R.

(9) R=R*:= {z € Rlz/1 € R, + J(R,) for every p € Spec(R)}, where J(A)
denotes the Jacobson radical of the ring A.

The original definition of “seminormal” in {12] for a commutative Noetherian
ring R with finite integral closure B was that B = R*. The equivalence of conditions
(7) and (9) (with no finiteness asswmption on R)j was shown in [4, Theorem 1.1}.
Note that condition (7) holds by default for any commutative ring R with T(R) = R,
and thus condition (7) does not imply that R is reduced. Hence (7) # (1) in general.
Examples in [3] and [11], and Examples 2.7 and 3.5, show that (7) # (1) even for
reduced rings R with T(R) = R. Clearly (7) = (8). Although some evidence
indicates that (8) # (7), we have not been able to find such an example. For a
survey of (2,3)-closure and root closure, see [1].

We next determine the precise relationship between conditions (1) and (7), and
show that conditions (6) and (8) are equivalent.

THEOREM 3.1. Let R be a commutative ring. Then

(a) R satisfies condition (1) if and only if R satisfies condition (7) and T{R)
satisfies condition (1). In particular, (1} = (7).

(b) (7) = (6).

(c) (6) = (8).
Proof. (a) First suppose that R satisfies (1). Let S be the set of regular elements of
R. Then T(R) = Rg also satisfies (1) by [11, Proposition 3.7]. Let = € T(R) with
22,23 € R. Then (23)? = (z2)3, and hence 2® = k® and 27 = k? for some k € R
since R satisfies (1). By [11, Lemma 3.1], then z = k € R since R, and hence T{R),
is reduced. Thus R satisfies (7).

Conversely, suppose that R satisfies (7) and T'(R) satisfies (1). Let a,b € R with
a? = b3 Then a = k? and b = k? for some k € T(R) since T(R) satisfies (1). Thus
k%, k* ¢ R implies k € R by (7). Hence R satisfies (1).

(b} Suppose that R satisfies (7). Let a® = b° with b a regular element of R.
Let z = a/b € T(R). Then 22 = a®/b* = b € R and «® = a’/b® = a € R. Thus
a/b € R; so bla. Hence R satisfies (6).

(¢) Suppose that R satisfies condition (6) and that z2, 2% € R for some unit
z of T(R). Then 22 = ¢ and z° = d for regular elements ¢ and d of R. Hence
28 = ¢ = d?. Thus ¢|d by hypothesis; so d = ck for k a regular element of A
Hence zc = 13 = d = ck, and thus = = k € R. Hence R satisfies condition (8). The
proof of (8) = (6) is similar to the proof of part (b) above since a/b is a unit of
T(R) if o and b are regular elements of R. i
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COROLLARY 3.2. Let R be a reduced commutative ring with only a finite num-
ber of minimal prime ideals. Then conditions (1) - (9) are all equivalent. In par-
ticular, they are all equivalent if R is a reduced commutative Noetherian ring.

sz;f In this case, T{R) is a direct product of finitely many fields (11, Corollary
and thus T(R) satisfies condition (1). Hence conditions {1) - (8) are equivalent

by Theorem 2.6 and Theorem 3.1. Conditions (7) and (9) are equivalent by [4,
|

Theorem 1.1]. .

As mentioned in the Introduction, a commutative ring R satisfies Pic(R[X]) =
Pic(R) if and only if R4 is seminormal (i.e., satisfies condition (1}); thus if and
only if Ryeq 1s {2,3)-closed and T(R,q) is <emm0rmal In particular, if R hasonly a
finite number of minimal prime ideals, then Pic(R X 1) = Pic(R) if and only if Ryeq
satisfies any of conditions (1) - (9). Conditions (2), (3), and (6) are the easiest to
check since they only involve divisibility in Ryeq. Also, if Pic(R[X]) = Pic(R) for
a reduced commutative ring R, then R is seminormal, and hence R is (2,3)-closed;

this has been observed in [4, Theorem 1.5] and [10, Theorem 3].

We next isolate, in the context of subrings of direct products of integral do-
mains, the most important equivalent conditions to have Pic(R[X]) = Pic(R).
Example 2.7 shows that the hypothesis that b can be extended to a regular element

of R is needed.

THEOREM 3.3. Let R be a subring of a direct product of integral domains such
that if a* = b® for a,b € R, then b can be extended to a regular element of R. Then

the following four statements are equivalent.
(o) Pic{R[X]) = Pic(R}.
R s semén?w{;ai (i.e., R satisfies condition (1)).
If22,2% € R for some z € T(R), thenx € R (i.e, R satisfies condition (7).
(d) If a® = b3 for some a,b € R with b a regular element of R, then bla fi.e, R
%{izgﬁw condition g,}};,

In particular, oll four statements are equivalent if R is a subring of o direct
product of finitely many integral domains. Thus all four statements are equ ivalent
if R is o reduced commutative ring with only a finite number of minimal prime ideals

{for erample, if R is a reduced commutative Noetherian ring).

Proof. We have already observed that (a) and (b} are equivalent %ry gii? Theorem

Hoand (b) and {iéé are equivalent by Theorem 2.4 g Theorem 3.1, {b) = {¢) and
7 Y r 3 W %

() = (d) U

We end this paper by considering which of the conditions are preserved by

J & i B

ljoining indeterminates. By the Picard group characterization of seminormality,
seminormal (Le., satisfies condition {1}} = His sz’*nsigziwzzzsxé However,
) %Ui"‘l not. To see

F.y satisties conditions {3},

. b, g vy

this, note that o = ¥+ 2 and b = .

a® - XY B3 Lt there does not exist a kb € gig (X W%;;{i; }sgif&f‘ziii‘b any of conditions
%) )

D which satisfy

(3) - (6).
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It is of more interest to determine when R[X] is (2,3)-closed. First note that
if R{X] is (2,3)-closed, then R is reduced and (2.3)-closed. However, even if R
is reduced, then R (2,3)-closed need not imply that R[X] is (2,3)-closed {see [2,
Example 1}). In [2, Theorem 2], Brewer, Costa, and McCrimmon showed that R[X]
is (2,3)-closed if R is (2,3)-closed and ; (1) is von Neumann regular. We can slightly
sharpen their result to just assuming that T(R} is seminormal. {Recall that a von
Neumann regular ring R is seminormal with T(R) = R, but a seminormal ring R
with T(R) = I need not be von Neumann regular. For example, let & be any field;
then R = K(1,1,1... )+ B XK[X] C o1 KX is seminormal with T(R)= R,
but R is not von Neumann regular.)

THEOREM 3.4. Let R be a (reduced) commutative ring such that T{R) is semi-
normal. Then R is (2,3)-closed if and only if R{X] is (2,3)-closed.

suppose that f is (2,3)-closed and T(R) is seminormal. Then R is seminormal {i.e.,
satisfies condition (1)) by Theorem 3.1(a). Hence R[X] is seminormal, and thus
R{X] is (2,3)-closed by Theorem 3.1(a). 0

Proof. If R[X] is (2,3)-closed, then certainly R is also (2,3)-closed. Conversely,

i

As observed above, if R is seminormal, then R[X] is seminormal, and hence

R{X] is also (2,3)-closed. However, our next example shows that it is possible to
have R[X] (2,3)-closed, in fact, integrally closed, but R is not seminormal.

EXAMPLE 3.5. Let K be any field, Y an indeterminate, and R = K{1,1,1,...)
+@YK[Y] ¢ [],-, K[Y]. Then clearly T(R) = R; so R is integrally closed,
but R is not seminormal. By [8, Corollary 7], R[X] is integrally closed, and hence
(2,3)-closed. Thus R[X] (2,3)-closed does not imply that R is seminormal. In fact,
R is integrally closed and satisfies each of the conditions (6) - (9), but R does not
satisfy any of conditions (1) - (5).

Finally, note that for a reduced commutative ring R, Lucas [9, Corollary 6] has
shown that R[X] is (2,3)-closed if and only if R is (2,3)-closed in Q,(R), where
(o(R) is the ring of finite fractions of R (cf [7, pp. 36-46]).
Acknowledgements

The second author would like to thank the University of Tennessee for a fantastic
time while visiting there during 1998-99.

References

[1] D. F. Anderson, Root closure in commutative rings, a survey, Lecture Notes
in Pure and Applied Mathematics, vol. 205, Marcel Dekker, New York, 1999,
B
55-71.

{2] J. W. Brewer, D. L. Costa, and K. McCrimmon, Seminormality and root
closure in polynomial rings and algebraic curves, J. Algebra 58(14979), 217-
226,

[3] R. Gilmer, Multiplicative Ideal Theory, Marcel Delcker, New York, 1972,

i




Seminormality in Commutative Rings 59

[4] R. Gilmer and R. Heitmann, On Pic(R{X]) for R seminormal, J. Pure Appl.
Algebra 16(1980), 251-257.

[5] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New
York, 1988,

[6] 1. Kaplansky, Commutative Rings, Univ. of Chicago Press, Chicago, rev. ed.,
1974.

{7] J. Lambeck, Lectures on Rings and Modules, Chelsea, New York, 1986.

[8] T. G. Lucas, Characterizing when R[X] is integrally closed, Proc. Amer.
Math. Soc. 105(1980), 861-867.

[9] T. G. Lucas, Characterizing when R[X] is integrally closed, II, J. Pure Appl.
Algebra 61(1989), 49-52.

[10] D. E. Rush, Seminormality, J. Algebra 67(1980), 377-384.
[11] R. G. Swan, On seminormality, J. Algebra 67(1980), 210-229.

[12] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa
24(1970), 585-595.




